Integrating 3D printing of polymer matrix composites and metal additive layer manufacturing: surface metallization of 3D printed composite panels through cold spray deposition of aluminium particles

Author:

Perna Alessia Serena,Viscusi Antonio,Gatta Roberta Della,Astarita Antonello

Abstract

AbstractThe integration of metals and polymers in the same component to couple the best properties and advantages of both these classes of materials can be useful for engineering applications. In this scenario, the aim of this paper is to integrate additive manufacturing of composites with cold spray deposition of metal particles: in particular, 3D-printed carbon fibre-reinforced plastics (CFRP) panels were coated with aluminium particles to couple the lightweight and high mechanical properties of CFRP with high wear resistance and hardness of metals. CFRP panels have been produced by using the Fused Filament Fabrication (FFF) technology, then the panels have been coated with aluminium particles by using a low pressure cold spray facility. Panels with various stratification sequences have been produced to investigate the feasibility of the process and to highlight the influence of the lay-up strategy on the whole process; the parameters of the cold spray process have been also optimized to ensure an effective deposition. Adhesion tests, distortion measurements, cross-section observations and surface coverage measurements have been chosen as response outputs to evaluate the effectiveness of the process and to assess the influence of the process parameters. The integration between FFF of CFRPs and cold spray deposition of aluminium particles has been proved, values of surface coverage close to 100% and good values of adhesion strength (close to 4 MPa) have been achieved; moreover, the presence of the fibres, giving a higher stiffness to the substrate, avoids the occurrence of distortion phenomena during the deposition. It was also proved that the printing parameters influence the deposition: an increase in the infill density from 30% to 50% leads to an increase in the adhesion strength up to 40%. In summary, the results obtained proved the feasibility of the process and allowed to enucleate directions of future research.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3