Abstract
AbstractFumonisin B1 (FB1) is a harmful mycotoxin produced by Fusarium species, which results in oxidative stress leading to cell death in plants. FB1 perturbs the metabolism of sphingolipids and causes growth and yield reduction. This study was conducted to assess the role of ethylene in the production and metabolism of reactive oxygen species in the leaves of wild type (WT) and ethylene receptor mutant Never ripe (Nr) tomato and to elucidate the FB1-induced phytotoxic effects on the photosynthetic activity and antioxidant mechanisms triggered by FB1 stress. FB1 exposure resulted in significant ethylene emission in a concentration-dependent manner in both genotypes. Moreover, FB1 significantly affected the photosynthetic parameters of PSII and PSI and activated photoprotective mechanisms, such as non-photochemical quenching in both genotypes, especially under 10 µM FB1 concentration. Further, the net photosynthetic rate and stomatal conductance were significantly reduced in both genotypes in a FB1 dose-dependent manner. Interestingly, lipid peroxidation and loss of cell viability were also more pronounced in WT as compared to Nr leaves indicating the role of ethylene in cell death induction in the leaves. Thus, FB1-induced oxidative stress affected the working efficiency of PSI and PSII in both tomato genotypes. However, ethylene-dependent antioxidant enzymatic defense mechanisms were activated by FB1 and showed significantly elevated levels of superoxide dismutase (18.6%), ascorbate peroxidase (129.1%), and glutathione S-transferase activities (66.62%) in Nr mutants as compared to WT tomato plants confirming the role of ethylene in the regulation of cell death and defense mechanisms under the mycotoxin exposure.
Funder
Hungarian Scientific Research Fund
Emberi Eroforrások Minisztériuma
Magyar Tudományos Akadémia
University of Szeged
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Agronomy and Crop Science
Reference92 articles.
1. Abbas HK, Boyette CD (1992) Phytotoxicity of fumonisin B1 on weed and crop species. Weed Technol 6(3):548–552
2. Ambastha V, Tripathy BC, Tiwari BS (2015) Programmed cell death in plants: a chloroplastic connection. Plant Signal Behav 10(2):e989752
3. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396
4. Asai T, Stone JM, Heard JE et al (2000) Fumonisin B1–induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signalling pathways. Plant Cell 12(10):1823–1835
5. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signalling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidat Med Cell Long.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献