Abstract
AbstractDNA methylation is an important epigenetic mechanism involved in gene regulation under environmental stresses in plants. However, little information is available regarding its responses to high temperature (HT) and association with HT tolerance in rice. In this study, fourteen rice genotypes were classified into the susceptible, moderate, and tolerant groups by the high temperature susceptibility index (HTSI) after HT treatment. The changes of DNA methylation in rice anthesis under normal and HT30 conditions were investigated using methylation-sensitive amplified polymorphism31 (MSAP). The MSAP results showed that the DNA methylation level significantly increased in the susceptible rice group and decreased in the tolerant rice group under HT treatment, while no significant difference was observed in the moderate rice group. More hypomethylation events were detected in the tolerant rice group, while more hypermethylation was detected in the susceptible rice group. Forty-four differentially methylated epiloci (DME) were generated under both control and HT conditions, which can clearly distinguish the susceptible, moderate, and tolerant genotypes via PCoA analysis. Approximately 43.18% of DMEs were determined to be tolerance-associated epiloci (TAEs). 63.15% TAEs were sequenced and annotated into 12 genes. Quantitative RT-PCR analysis showed that 12 TAE genes were mainly upregulated in 14 rice genotypes, and their expression levels were related to the HT tolerance of rice. Here, DEGs, generated from a number of genotypes, indicate higher probabilities for association with stress tolerance. Overall, these results suggest that DNA methylation regulation might play a key role in adaptation to HT stress in rice.
Funder
Hubei Outstanding Youth Fund
Hubei Key Research and Development Program
Major R&D Project of Hubei Agricultural Science and Technology Innovation Center
Open Research Fund of State key laboratory of hybrid rice
Open Research Fund of Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin
Open Research Fund of Engineering Research Center of Ecology and Agriculture Use of Wetland
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Agronomy and Crop Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献