The Phylogeny and Functional Characterization of Peanut Acyl-ACP Thioesterases

Author:

Peng ZhenyingORCID,Zhang Hui,Tian Haiying,Shan Lei,Zhang Zhimeng,Ding Hong,Gao Wenwei,Li Xinguo

Abstract

AbstractFatty acyl-acyl thioesterases (FATs), which hydrolyze the thioester bond linking acyl chains to an acyl carrier protein, thereby terminating their elongation, contribute significantly to the fatty acid (FA) content and composition of seed storage lipids. The peanut (Arachis hypogaea L.) genome was found to harbor 21 FAT (AhFAT) genes, distributed over 12 of the 20 chromosomes. The length of their predicted translation products varied from 74 to 415 residues, and all but one included the 1–2 Acyl-ACP_TE conserved domains. All of the coding sequences were interrupted by at least one intron, with the exon number ranging from two to 12, and five of the genes were liable to alternative splicing. When the RNA-Seq platform was used to assess the transcriptional behavior of the 21 AhFAT genes, transcription of only 13 was detectable in samples of root, leaves, and developing seed; among these, six were transcribed throughout the plant, three were root-specific and one was leaf-specific. A detailed analysis of a pair of homologous AhFATs showed that the coding region of each was split into six exons and that both were transcribed in all of the plant organs surveyed (although the intensity of their transcription was not the same in immature seed). The product of both genes was deposited in the chloroplast outer membrane. The constitutive expression of these genes in either yeast or Arabidopsis thaliana increased the FA content, especially that of saturated FAs. In peanut genome, 21 AhFAT genes were found and two of them were transformed into yeast and Arabidopsis for function identification. Results showed that overexpression of these two genes could increase the FA content, especially the saturated FAs content.

Funder

the National Key Research and Development Program of China

Shandong Province Germplasm Innovation

Major Basic Research Project of Natural Science Foundation of Shandong Province

Major Scientific and Technological Innovation Projects of Shandong Province

the Earmarked Fund for Modern Agroindustry Technology Research System

Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3