Alleviating the Injuries of NaCl Exposure on Respiratory Activities, Leaf Stomatal and Antioxidant Defense of Silybum marianum L. Seedlings by Exogenous Nitric Oxide

Author:

Zangani EsmaeilORCID,Ansari Aida,Shekari Farid,Andalibi Babak,Afsahi Kamran,Mastinu AndreaORCID

Abstract

AbstractNitric oxide (NO) is recognized as an endogenous signaling molecule that plays an important role in the defence responses of medicinal plants to NaCl stress. In this study, we investigated the effects of sodium nitroprusside (SNP) as an NO donor at three concentrations (0, 100, and 200 µmol l−1) to alleviate the deleterious effects of salt stress (100 mM NaCl) on leaf gas exchange and biochemical characteristics of Silybum marianum L. seedlings. This study showed that salt stress significantly decreased relative water content (RWC), chlorophyll b content, endogenous NO concentration, maximum quantum yield (Fv/Fm), leaf gas exchange, stomatal size, K+/Na+ ratio, and plant dry weight, and increased malondialdehyde (MDA) content, hydrogen peroxide (H2O2) content, proline content, stomatal density, and enzyme activities. SNP treatment increased Fv/Fm, photosynthetic pigments, K+/Na+ ratio, and dry weights of the shoots and roots of NaCl-exposed plants. The exogenous application of NO increased the proline content under salinity stress more than under stress conditions without SNP application, so that the proline content increased from 32 to 47 µmol g−1. Application of 100 µM SNP also increased endogenous NO concentration (up to 43%) and consequently protected plants against salt stress-induced damage by improving enzyme activity and reducing the H2O2 generation rate (up to 14%) and MDA content (up to 50%) compared to plants treated with NaCl alone. Foliar application of NO to salt-stressed plants increased root and shoot respiration rates from 20 and 12%, respectively, under salinity stress to 57% under the application of SNP and stress conditions, and decreased stomatal conductance by up to 70%, resulting in improved RWC. Increased internal NO generation in plants induced by 100 µM SNP application has the potential to mitigate salinity injury in Silybum marianum L. plants.

Funder

Università degli Studi di Brescia

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3