The GH3 Protein from the Clubroot Pathogen Plasmodiophora brassicae Causes Hormone-Related Phenotypes in Arabidopsis thaliana

Author:

Smolko Ana,Jülke Sabine,Benade Freia,Široká Jitka,Pěnčík Aleš,Vuk Tamara,Bauer Nataša,Salopek-Sondi Branka,Ludwig-Müller JuttaORCID

Abstract

AbstractIn the genome of the obligate biotrophic protist Plasmodiophora brassicae, which causes clubroot disease in the Brassicaceae family, a single gene was identified with homology to the group of GH3 proteins synthesizing amino acid conjugates with carboxylic acids. In comparison to plant members the P. brassicae GH3 protein seems to be very promiscuous with respect to the substrates converted. In vitro assays showed conversion of three different auxins (indole-3-acetic, IAA; indole-propionic, IPA; and indole-3-butyric acids, IBA), jasmonic acid (JA) and also 12-oxo-phytodienoic acid (OPDA). Auxin and Methyl-JA responsive elements were found in the promoter sequence of PbGH3. For further analysis Arabidopsis thaliana was transformed with PbGH3. Seedlings with confirmed constitutive PbGH3 protein production were grown to adult plants that were shown to produce fewer inflorescences per plant. Growth on 10 µM IAA or JA levels also altered the phenotype of the seedlings, but not so much between wild types and transgenic lines. The hormone profiles in seedlings and adult plants were examined for IAA, JA, OPDA, and respective conjugates. Transgenic seedlings displayed changes that could be partially attributed to the overexpression of a GH3 gene like lower levels of free IAA and the JA precursor cis-OPDA under control conditions, and higher levels of some auxin conjugates accumulated after IAA treatment compared to the corresponding wild types. However, the hormone patterns in adult plants were more complex and varied based on different tissue types analyzed. After inoculation with P. brassicae the transgenic plants did not show any changes in infection rate and disease index, but had higher shoot and lower root weight in infected plants compared to controls. Based on the above findings we discuss a role for PbGH3 during pathogenesis.

Funder

German Academic Exchange Service

Bundesanstalt für Landwirtschaft und Ernährung

Croatian Ministry of Science and Education

Croatian Science Foundation

Czech Science Foundation

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3