Topographic variation and fluid flow characteristics in rough contact interface

Author:

Ji Jiawei,Sun Wei,Du Yu,Zhu Yongqing,Guo Yuhang,Liu Xiaojun,Jiao Yunlong,Liu Kun

Abstract

AbstractUnderstanding flow characteristics of fluid near rough contact is important for the design of fluid-based lubrication and basic of tribology physics. In this study, the spreading and seepage processes of anhydrous ethanol in the interface between glass and rough PDMS are observed by a homemade optical in-situ tester. Digital image processing technology and numerical simulation software are adapted to identify and extract the topological properties of interface and thin fluid flow characteristics. Particular attention is paid to the dynamic evolution of the contact interface morphology under different stresses, the distribution of microchannels in the interface, the spreading characteristics of the fluid in contact interface, as well as the mechanical driving mechanism. Original surface morphology and the contact stress have a significant impact on the interface topography and the distribution of interfacial microchannels, which shows that the feature lengths of the microchannels, the spreading area and the spreading rate of the fluid are inversely proportional to the load. And the flow path of the fluid in the interface is mainly divided into three stages: along the wall of the island, generating liquid bridges, and moving from the tip side to the root side in the wedge-shaped channel. The main mechanical mechanism of liquid flow in the interface is the equilibrium between the capillary force that drives the liquid spreading and viscous resistance of solid wall to liquid. In addition, the phenomenon of “trapped air” occurs during the flow process due to the irregular characteristics of the microchannel. This study lays a certain theoretical foundation for the research of microscopic flow behavior of the liquid in the rough contact interface, the friction and lubrication of the mechanical system, and the sealing mechanism.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3