Generating synthetic as-built additive manufacturing surface topography using progressive growing generative adversarial networks

Author:

Seo Junhyeon,Rao Prahalada,Raeymaekers Bart

Abstract

AbstractNumerically generating synthetic surface topography that closely resembles the features and characteristics of experimental surface topography measurements reduces the need to perform these intricate and costly measurements. However, existing algorithms to numerically generated surface topography are not well-suited to create the specific characteristics and geometric features of as-built surfaces that result from laser powder bed fusion (LPBF), such as partially melted metal particles, porosity, laser scan lines, and balling. Thus, we present a method to generate synthetic as-built LPBF surface topography maps using a progressively growing generative adversarial network. We qualitatively and quantitatively demonstrate good agreement between synthetic and experimental as-built LPBF surface topography maps using areal and deterministic surface topography parameters, radially averaged power spectral density, and material ratio curves. The ability to accurately generate synthetic as-built LPBF surface topography maps reduces the experimental burden of performing a large number of surface topography measurements. Furthermore, it facilitates combining experimental measurements with synthetic surface topography maps to create large data-sets that facilitate, e.g. relating as-built surface topography to LPBF process parameters, or implementing digital surface twins to monitor complex end-use LPBF parts, amongst other applications.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3