Long short-term memory based semi-supervised encoder—decoder for early prediction of failures in self-lubricating bearings

Author:

Pandiyan Vigneashwara,Akeddar Mehdi,Prost Josef,Vorlaufer Georg,Varga Markus,Wasmer Kilian

Abstract

AbstractThe existing knowledge regarding the interfacial forces, lubrication, and wear of bearings in real-world operation has significantly improved their designs over time, allowing for prolonged service life. As a result, self-lubricating bearings have become a viable alternative to traditional bearing designs in industrial machines. However, wear mechanisms are still inevitable and occur progressively in self-lubricating bearings, as characterized by the loss of the lubrication film and seizure. Therefore, monitoring the stages of the wear states in these components will help to impart the necessary countermeasures to reduce the machine maintenance downtime. This article proposes a methodology for using a long short-term memory (LSTM)-based encoder—decoder architecture on interfacial force signatures to detect abnormal regimes, aiming to provide early predictions of failure in self-lubricating sliding contacts even before they occur. Reciprocating sliding experiments were performed using a self-lubricating bronze bushing and steel shaft journal in a custom-built transversally oscillating tribometer setup. The force signatures corresponding to each cycle of the reciprocating sliding motion in the normal regime were used as inputs to train the encoder—decoder architecture, so as to reconstruct any new signal of the normal regime with the minimum error. With this semi-supervised training exercise, the force signatures corresponding to the abnormal regime could be differentiated from the normal regime, as their reconstruction errors would be very high. During the validation procedure for the proposed LSTM-based encoder—decoder model, the model predicted the force signals corresponding to the normal and abnormal regimes with an accuracy of 97%. In addition, a visualization of the reconstruction error across the entire force signature showed noticeable patterns in the reconstruction error when temporally decoded before the actual critical failure point, making it possible to be used for early predictions of failure.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3