Author:
Liu Yuwei,Sun Yuanzhi,Gao Ziyin,Ye Fuhao,Tang Pei
Abstract
AbstractHigh temperatures are generated due to the sliding contacts between the rubbing surfaces of the friction clutch system. In this work, by considering the effective thermal contact conductance under sliding conditions, a simulation model of a two-dimensional transient temperature field of the clutch disc was developed. A numerical solution to obtain the surface temperature at different radii was presented based on the finite difference method. Compared with the experimental data, the proposed model for estimating the surface temperature is more accurate than the conventional prediction method. The results showed that the errors of the calculated temperatures at radii of 114 and 106 mm have obviously reduced by 12.98% and 12.60%, respectively. In addition, the influences of pressure and relative speed on the surface temperature were investigated. The temperature increases with the increase of the relative speed and pressure during the sliding period, and there is an interaction effect between pressure and speed on the surface temperature rise.
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献