Author:
Jia Dongzhou,Li Changhe,Liu Jiahao,Zhang Yanbin,Yang Min,Gao Teng,Said Zafar,Sharma Shubham
Abstract
AbstractMinimum quantity lubrication (MQL) is a relatively efficient and clean alternative to flooding workpiece machining. Electrostatic atomization has the merits of small droplet diameter, high uniformity of droplet size, and strong coating, hence its superiority to pneumatic atomization. However, as the current research hotspot, the influence of jet parameters and electrical parameters on the average diameter of droplets is not clear. First, by observing the shape of the liquid film at the nozzle outlet, the influence law of air pressure and voltage on liquid film thickness (h) and transverse and longitudinal fluctuations are determined. Then, the mathematical model of charged droplet volume average diameter (VAD) is constructed based on three dimensions of the liquid film, namely its thickness, transverse wavelength (λh), and longitudinal wavelength (λz). The model results under different working conditions are obtained by numerical simulation. Comparisons of the model results with the experimental VAD of the droplet confirm the error of the mathematical model to be less than 10%. The droplet diameter distribution span value Rosin-Rammler distribution span (R.S) and percentage concentrations of PM10 (particle size of less than 10 µm)/PM2.5 (particle size of less than 2.5 µm) under different working conditions are further analyzed. The results show that electrostatic atomization not only reduces the diameter distribution span of atomized droplets but also significantly inhibits the formation of PM10 and PM2.5 fine-suspension droplets. When the air pressure is 0.3 MPa, and the voltage is 40 kV, the percentage concentrations of PM10 and PM2.5 can be reduced by 80.72% and 92.05%, respectively, compared with that under the pure pneumatic atomization condition at 0.3 MPa.
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献