High-temperature friction behavior of amorphous carbon coating in glass molding process

Author:

Li Kangsen,Xu Gang,Wen Xiaobin,Zhou Jun,Gong Feng

Abstract

AbstractIn the glass molding process, the sticking reaction and fatigue wear between the glass and mold hinder the service life and functional application of the mold at the elevated temperature. To improve the chemical inertness and anti-friction properties of the mold, an amorphous carbon coating was synthesized on the tungsten carbide-cobalt (WC–8Co) substrate by magnetron sputtering. The friction behavior between the glass and carbon coating has a significant influence on the functional protection and service life of the mold. Therefore, the glass ring compression tests were conducted to measure the friction coefficient and friction force of the contact interface between the glass and amorphous carbon coating at the high temperature. Meanwhile, the detailed characterization of the amorphous carbon coating was performed to study the microstructure evolution and surface topography of the amorphous carbon coating during glass molding process by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Ramon spectroscopy, and atomic force microscope (AFM). The results showed that the amorphous carbon coating exhibited excellent thermal stability, but weak shear friction strength. The friction coefficient between the glass and coating depended on the temperature. Besides, the service life of the coating was governed by the friction force of the contact interface, processing conditions, and composition diffusion. This work provides a better understanding of the application of carbon coatings in the glass molding.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3