Modeling static friction behavior of elastic–plastic spherical adhesive microcontact in full-stick condition

Author:

Xiang Guo,Goltsberg Roman,Etsion Izhak

Abstract

AbstractThe static friction behavior of an elastic–plastic spherical adhesive microcontact between a rigid flat and a deformable sphere under combined normal and tangential loading is studied by the finite element method (FEM). The contact between the sphere and the rigid flat is assumed to be full-stick, and the sliding inception is related to a loss of tangential stiffness. The intermolecular force between the rigid flat and the sphere is assessed by the Lennard–Jones (LJ) potential, which is applied to the sphere and the rigid flat by a user subroutine. The evolution of the adhesive force with tangential displacement in the full-stick condition is revealed. The results indicate that the increasing effect of adhesive energy on the static friction coefficient gradually diminishes with an increase in the adhesive energy and the external normal load. Finally, based on an extensive parametric study, an empirical dimensionless expression is obtained to predict the static friction coefficient of the spherical adhesive microcontact considering the intermolecular force.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3