Author:
Xiang Guo,Goltsberg Roman,Etsion Izhak
Abstract
AbstractThe static friction behavior of an elastic–plastic spherical adhesive microcontact between a rigid flat and a deformable sphere under combined normal and tangential loading is studied by the finite element method (FEM). The contact between the sphere and the rigid flat is assumed to be full-stick, and the sliding inception is related to a loss of tangential stiffness. The intermolecular force between the rigid flat and the sphere is assessed by the Lennard–Jones (LJ) potential, which is applied to the sphere and the rigid flat by a user subroutine. The evolution of the adhesive force with tangential displacement in the full-stick condition is revealed. The results indicate that the increasing effect of adhesive energy on the static friction coefficient gradually diminishes with an increase in the adhesive energy and the external normal load. Finally, based on an extensive parametric study, an empirical dimensionless expression is obtained to predict the static friction coefficient of the spherical adhesive microcontact considering the intermolecular force.
Publisher
Springer Science and Business Media LLC