Energy dissipation in atomic-scale friction

Author:

Hu Yuan-zhong,Ma Tian-bao,Wang Hui

Abstract

Abstract The mechanisms of energy dissipation are discussed in this paper by reviewing the models and research in atomic-scale friction. The study is undertaken to answer a fundamental question in the study of friction: How is frictional work dissipated, particularly in cases where material damage and wear are not involved. The initiation of energy dissipation, the role of structural commensurability, and the estimation of the interfacial shear strength have been examined in detail by introducing the Tomlinson model, the Frenkel-Kontorova model, and the cobblestone model, respectively. The discussion is extended to energy dissipation progress described in terms of phononic and electronic damping. The contributions from other mechanisms of dissipation such as viscoelastic relaxation and material wear are also included. As an example, we analyzed a specific process of dissipation in multilayer graphene, on the basis of results of molecular dynamics (MD) simulations, which reveal a reversible part of energy that circulates between the system and the external driver. This leads us to emphasize that it is crucial in future studies to clearly define the coefficient of dissipation.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3