Description of sand–metal friction behavior based on subloading-friction model

Author:

Ozaki Toshiyuki,Yamakawa Yuki,Ueno Masami,Hashiguchi Koichi

Abstract

AbstractA subloading-friction model is formulated to describe the smooth transient variation from static friction to kinetic friction, the recovery to static friction after the sliding velocity decreases, and the accumulation of sliding displacement under the cyclic loading of contact stress. In the past relevant studies, however, the model formulation used for simulations is limited to the hypoelastic-based plasticity framework, and the validation of the model is limited to simulations of the test data for metal-to-metal friction. In this study, the formulation of the subloading-friction model based on a hyperelastic-based plasticity framework is adopted. In the fields of civil, geotechnical, agricultural engineering, and terramechanics, the interaction between soils and metals is critical, as reflected in construction and agricultural machinery, foundation piles, and retaining walls. The validity of the model for describing the friction between various sands and metals is verified by simulations of the experimental data under monotonic and cyclic loadings.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3