In-situ formation of nitrogen doped microporous carbon nanospheres derived from polystyrene as lubricant additives for anti-wear and friction reduction

Author:

Wang Yixin,Lu Qi,Xie Huijie,Liu Shujuan,Ye Qian,Zhou Feng,Liu Weimin

Abstract

AbstractThis study presents a nitrogen-doped microporous carbon nanospheres (N@MCNs) prepared by a facile polymerization–carbonization process using low-cost styrene. The N element in situ introduces polystyrene (PS) nanospheres via emulsion polymerization of styrene with cyanuric chloride as crosslinking agent, and then carbonization obtains N@MCNs. The as-prepared carbon nanospheres possess the complete spherical structure and adjustable nitrogen amount by controlling the relative proportion of tetrachloromethane and cyanuric chloride. The friction performance of N@MCNs as lubricating oil additives was surveyed utilizing the friction experiment of ball-disc structure. The results showed that N@MCNs exhibit superb reduction performance of friction and wear. When the addition of N@MCNs was 0.06 wt%, the friction coefficient of PAO-10 decreased from 0.188 to 0.105, and the wear volume reduced by 94.4%. The width and depth of wear marks of N@MCNs decreased by 49.2% and 94.5%, respectively. The carrying capacity of load was rocketed from 100 to 400 N concurrently. Through the analysis of the lubrication mechanism, the result manifested that the prepared N@MCNs enter clearance of the friction pair, transform the sliding friction into the mixed friction of sliding and rolling, and repair the contact surface through the repair effect. Furthermore, the tribochemical reaction between nanoparticles and friction pairs forms a protective film containing nitride and metal oxides, which can avert direct contact with the matrix and improve the tribological properties. This experiment showed that nitrogen-doped polystyrene-based carbon nanospheres prepared by in-situ doping are the promising materials for wear resistance and reducing friction. This preparing method can be ulteriorly expanded to multi-element co-permeable materials. Nitrogen and boron co-doped carbon nanospheres (B,N@MCNs) were prepared by mixed carbonization of N-enriched PS and boric acid, and exhibited high load carrying capacity and good tribological properties.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3