Dynamic, thermal, and vibrational analysis of ball bearings with over-skidding behavior

Author:

Gao Shuai,Han Qinkai,Pennacchi Paolo,Chatterton Steven,Chu Fulei

Abstract

AbstractThe term “over-skidding” indicates that the cage rotational speed ratio exceeds the theoretical value as ball purely rolls on the raceway. Different from the skidding phenomenon that occurs in low-load and high-speed bearing, over-skidding usually occurs in large-size angular contact bearings, and it is still difficult to suppress under high load conditions. The main forms of damage to the raceway by over-skidding are spinning and gyro slip. To further explore the vibration characteristics and thermal effects of this phenomenon, a set of over-skidding tests of an angular contact bearing with a bore diameter of 220 mm were conducted on an industrial-size test bench. Through the experiment, the influence of axial load, rotational speed, and lubrication conditions on the occurrence of over-skidding were determined. Based on a previous dynamics model, the heat generation and thermal network models were integrated in the present study to predict the over-skidding and its thermal behavior. The model was validated in terms of the measured degree of over-skidding and temperature rise. The results showed that the degree of over-skidding reaches up to 12% of the theoretical value, and the friction power loss of the ball-pocket accounts for 30% of the total power loss. The analysis of the vibration signal showed a strong correlation between the bearing vibration characteristics and over-skidding behavior, thereby providing a way to indirectly measure the degree of over-skidding.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3