Author:
Linzmayer Martin,Gutiérrez Guzmán Francisco,Manke Gregor,Jacobs Georg,Sous Christopher,Pohl Michael
Abstract
AbstractSub-surface crack networks in areas of altered microstructure are a common cause for bearing failures. Due to its appearance under light microscopy, the damage pattern is referred to as White Etching Cracks (WEC). The root causes leading to the formation of WEC are still under debate. Nevertheless, it has already been shown that atomic hydrogen can have an accelerating effect on the formation and propagation of WEC. In addition to hydrogen pre-charging, hydrogen can be released and absorbed during rolling/sliding due to the decomposing of the lubricant and water. The current work focuses on the analysis of the hydrogen content of cylindrical roller thrust bearings after testing in a FE8 type test rig using two different lubricants. Within the framework of this work, two different hydrogen analysis methods were used and assessed regarding their applicability. The results show that the so-called Hydrogen Collecting Analysis (HCA) is more suitable to investigate the correlation between lubricant chemistry and hydrogen content in the test bearings than the Local Hydrogen Analysis (LHA). The measurements with the HCA show a continuously increasing freely movable and diffusible hydrogen content under tribological conditions, which leads to the formation of WEC. Comparative tests with an oil without hydrogen showed that the tendency of the system to fail as a result of WEC can be reduced by using a lubricant without hydride compounds.
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Reference45 articles.
1. Wälzlager — Dynamische Tragzahlen und nominelle Lebensdauer. Deutsche Norm DIN ISO 281. Beuth Verlag GmbH, Berlin (Deutschland), Okt. 2010.
2. Ph.D. Thesis;A R Du Créhu,2015
3. Errichello R, Budny R, Eckert R. Investigations of bearing failures associated with white etching areas (WEAs) in wind turbine gearboxes. Tribol Trans 56(6): 1069–1076 (2013)
4. Tamada K, Tanaka H. Occurrence of brittle flaking on bearings used for automotive electrical instruments and auxiliary devices. Wear 199(2): 245–252 (1996)
5. Holweger W. Influence on bearing life by new material phenomena. In NREL-Wind Turbine Tribology Seminar, Broomfield, CO, USA, 2011.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献