Effect of oxide film on nanoscale mechanical removal of pure iron

Author:

Liu Jinwei,Jiang Liang,Deng Changbang,Du Wenhao,Qian Linmao

Abstract

Abstract In this paper, the properties of an oxide film formed on a pure iron surface after being polished with an H2O2-based acidic slurry were investigated using an atomic force microscope (AFM), Auger electron spectroscopy (AES), and angle-resolved X-ray photoelectron spectroscopy (AR-XPS) to partly reveal the material removal mechanism of pure iron during chemical mechanical polishing (CMP). The AFM results show that, when rubbed against a cone-shaped diamond tip in vacuum, the material removal depth of the polished pure iron first slowly increases to 0.45 nm with a relatively small slope of 0.11 nm/μN as the applied load increases from 0 to 4 μN, and then rapidly increases with a large slope of 1.98 nm/μN when the applied load further increases to 10 μN. In combination with the AES and AR-XPS results, a layered oxide film with approximately 2 nm thickness (roughly estimated from the sputtering rate) is formed on the pure iron surface. Moreover, the film can be simply divided into two layers, namely, an outer layer and an inner layer. The outer layer primarily consists of FeOOH (most likely α-FeOOH) and possibly Fe2O3 with a film thickness ranging from 0.36 to 0.48 nm (close to the 0.45 nm material removal depth at the 4 μN turning point), while the inner layer primarily consists of Fe3O4. The mechanical strength of the outer layer is much higher than that of the inner layer. Moreover, the mechanical strength of the inner layer is quite close to that of the pure iron substrate. However, when a real CMP process is applied to pure iron, pure mechanical wear by silica particles generates almost no material removal due to the extremely high mechanical strength of the oxide film. This indicates that other mechanisms, such as in-situ chemical corrosion-enhanced mechanical wear, dominate the CMP process.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference29 articles.

1. Kong J X, Deng F, Zhao W, He N. Effects of cooling/lubrication conditions on surface integrity of pure iron materials during turning. (in Chinese). Journal of South China University of Technology (Natural Science Edition) 43(6): 89–95 (2015)

2. Kong J X, Hu K, Xia Z H, Li L. Effects of tool wear on surface integrity of pure iron material under finish turning. (in Chinese). Journal of South China University of Technology (Natural Science Edition) 44(2): 74–80 (2016)

3. Li W-B, Wang X-M, Zhou H. Effect of the liner material on the shape of dual mode penetrators. Combustion, Explosion, and Shock Waves 51(3): 387–394 (2015)

4. Pérez Escobar D, Miñambres C, Duprez L, Verbeken K, Verhaege M. Internal and surface damage of multiphase steels and pure iron after electrochemical hydrogen charging. Corros Sci 53(10): 3166–3176 (2011)

5. Jia W, Zhang Q, Bai Z, Ma S, Yao D, Wang Y. Progress on manufacturing techniques of shaped charge liners. (in Chineses). Rare Metal Materials and Engineering 36(9): 1511–1516 (2007)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3