Rigid—flexible hybrid surfaces for water-repelling and abrasion-resisting

Author:

Hu Songtao,Huang Weifeng,Li Jinbang,Reddyhoff Tom,Cao Xiaobao,Shi Xi,Peng Zhike,Demello Andrew,Dini Daniele

Abstract

AbstractDroplets impacting solid superhydrophobic surfaces is appealing not only because of scientific interests but also for technological applications such as water-repelling. Recent studies have designed artificial surfaces in a rigid—flexible hybrid mode to combine asymmetric redistribution and structural oscillation water-repelling principles, resolving strict impacting positioning; however, this is limited by weak mechanical durability. Here we propose a rigid—flexible hybrid surface (RFS) design as a matrix of concave flexible trampolines barred by convex rigid stripes. Such a surface exhibits a 20.1% contact time reduction via the structural oscillation of flexible trampolines, and even to break through the theoretical inertial-capillary limit via the asymmetric redistribution induced by rigid stripes. Moreover, the surface is shown to retain the above water-repelling after 1,000 abrasion cycles against oilstones under a normal load as high as 0.2 N·mm−1. This is the first demonstration of RFSs for synchronous waterproof and wearproof, approaching real-world applications of liquid-repelling.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3