Metastable hybridized structure transformation in amorphous carbon films during friction—A study combining experiments and MD simulation

Author:

Zhou Yefei,Chen Zhihao,Zhang Tao,Zhang Silong,Xing Xiaolei,Yang Qingxiang,Li Dongyang

Abstract

AbstractAmorphous carbon films have attracted substantial interest due to their exceptional mechanical and tribological properties. Previous studies revealed that the amorphous carbon films exhibited lower coefficient of friction (COF) because of the transformation in bond structure from sp3-C to sp2-C during friction processes. However, the mechanism for such a transformation during friction is not well understood. This study is conducted to get an insight into the metastable transformation in amorphous carbon film during friction by means of experiments and molecular dynamics (MD) simulation. Relevant wear tests showed that wear of the film changed from an abrasive wear mode to a mixture of abrasion and adhesive wear, resulting in a decrease in growth rate of the wear rate after the running-in stage. It is worth noting that the sp3-C atoms were increased during the running-in stage when the films contained lower sp3/sp2 ratios. However, the formed sp3-C atoms could only be short-lived and gradually transformed to sp2-C atoms with the graphitization generated on the wearing surface of the films. The radial distribution function and translational order parameter indicated that the films’ high sp3/sp2 ratio led to an increased sp2-C proportion on the wear scar after friction, which caused an increased structural ordering.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3