Effects of solid friction modifier on friction and rolling contact fatigue damage of wheel-rail surfaces

Author:

Song Jingdong,Shi Lubing,Ding Haohao,Galas Radovan,Omasta Milan,Wang Wenjian,Guo Jun,Liu Qiyue,Hartl Martin

Abstract

AbstractIn railway network, friction is an important factor to consider in terms of the service behaviors of wheel-rail system. The objective of this study was to investigate the effect of a solid friction modifier (FM) in a railway environment. This was achieved by studying the friction, wear, and rolling contact fatigue (RCF) damage on the wheel-rail materials at different slip ratios. The results showed that when a solid FM was applied, the friction coefficient decreased. After the solid FM was separated from the wheel-rail interface, the friction coefficient gradually increased to its original level. With the application of the solid FM, the wear rates of the wheel-rail decreased. In addition, the thickness and hardness of the plastic deformation layers of the wheel-rail materials were reduced. The worn surfaces of the wheel-rail were dominated by pits and RCF cracks. Without the FM, RCF cracks ranged from 84 to 120 µm, and subsurface cracks were generated. However, with the FM, RCF cracks ranged from 17 to 97 µm and no subsurface cracks were generated. These findings indicate possible methods of improving the performance of railway rolling stock by managing friction, and reducing wear and permanent RCF damage affecting both the wheels and rails.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3