Extremely low friction on gold surface with surfactant molecules induced by surface potential

Author:

Gao Tianyang,Li Jinjin,Wang Weiqi,Luo Jianbin

Abstract

AbstractAn extremely low friction state was observed on the gold surface induced by applying a specific negative potential in cationic surfactant solution. The friction force showed a remarkable reduction from 8.3 to 3.5 × 10−2 nN (reduced by 99.6%) with increasing the period of negative applied potential, and the final friction coefficient could reduce down to 3 × 10−4. The extremely low friction state was robust, and it also exhibited an excellent load bearing capacity, which cannot be damaged by a high load. Moreover, the extremely low friction state achieved under negative applied potential could keep stable even after the removal of potential, but failed in a short time, once a specific positive potential was applied. It was demonstrated that there was a stable electro-adsorption of surfactant molecules on the gold surface induced by applying a negative potential, leading to the formation of a bilayer structure on the gold surface. The hydration layers of the bilayer on the gold surface and micelles on the silica probe provided a shear plane with an extremely low shear strength, leading to the extremely low friction state on the gold surface. This study provides a method to achieve extremely low friction state by applied potential.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3