Boundary slip and lubrication mechanisms of organic friction modifiers with effect of surface moisture

Author:

Yi Xiaobin,Xu Haiyu,Jin Ge,Lu Yang,Chen Biqiang,Xu Shaofeng,Shi Junqin,Fan Xiaoli

Abstract

AbstractSurface moisture or humidity impacting the lubrication property is a ubiquitous phenomenon in tribological systems, which is demonstrated by a combination of molecular dynamics (MD) simulation and experiment for the organic friction modifier (OFM)-containing lubricant. The stearic acid and poly-α-olefin 4cSt (PAO4) were chosen as the OFM and base oil molecules, respectively. The physical adsorption indicates that on the moist surface water molecules are preferentially adsorbed on friction surface, and even make OFM adsorption film thoroughly leave surface and mix with base oil. In shear process, the adsorption of water film and desorption OFM film are further enhanced, particularly under higher shear rate. The simulated friction coefficient (that is proportional to shear rate) increases firstly and then decreases with thickening water film, in good agreement with experiments, while the slip length shows a contrary change. The wear increases with humidity due to tribochemistry revealing the continuous formation and removal of Si-O-Si network. The tribological discrepancy of OFM-containing lubricant in dry and humid conditions is attributed to the slip plane’s transformation from the interface between OFM adsorption film and lubricant bulk to the interface between adsorbed water films. This work provides a new thought to understand the boundary lubrication and failure of lubricant in humid environments, likely water is not always harmful in oil lubrication systems.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3