Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms

Author:

Han Tianyi,Zhang Shuowen,Zhang Chenhui

Abstract

AbstractSuperlubricity, the state of ultralow friction between two sliding surfaces, has become a frontier subject in tribology. Here, a state-of-the-art review of the phenomena and mechanisms of liquid superlubricity are presented based on our ten-year research, to unlock the secrets behind liquid superlubricity, a major approach to achieve superlubricity. An overview of the discovery of liquid superlubricity materials is presented from five different categories, including water and acid-based solutions, hydrated materials, ionic liquids (ILs), two-dimensional (2D) materials as lubricant additives, and oil-based lubricants, to show the hydrodynamic and hydration contributions to liquid superlubricity. The review also discusses four methods to further expand superlubricity by solving the challenge of lubricants that have a high load-carrying capacity with a low shear resistance, including enhancing the hydration contribution by strengthening the hydration strength of lubricants, designing friction surfaces with higher negative surface charge densities, simultaneously combining hydration and hydrodynamic contribution, and using 2D materials (e.g., graphene and black phosphorus) to separate the contact of asperities. Furthermore, uniform mechanisms of liquid superlubricity have been summarized for different liquid lubricants at the boundary, mixed, and hydrodynamic lubrication regimes. To the best of our knowledge, almost all the immense progresses of the exciting topic, superlubricity, since the first theoretical prediction in the early 1990s, focus on uniform superlubricity mechanisms. This review aims to guide the research direction of liquid superlubricity in the future and to further expand liquid superlubricity, whether in a theoretical research or engineering applications, ultimately enabling a sustainable state of ultra-low friction and ultra-low wear as well as transformative improvements in the efficiency of mechanical systems and human bodies.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3