Surroundings affect slip length dynamics in nanoscale friction through contact stiffness and damping

Author:

Skuratovsky Simona,Agmon Liron,Gnecco Enrico,Berkovich Ronen

Abstract

AbstractFriction force microscopy (FFM) explores the interaction in a sliding contact on the nanoscale, providing information on the frictional dynamics and lateral contact stiffness with lattice resolution. Recent FFM measurements on a NaCl crystal immersed in liquid (ethanol) surroundings displayed an increase of the effective contact stiffness, Keff, with the applied load, differently from similar measurements performed under ultra-high vacuum (UHV) conditions, where Keff showed negligible load dependency. Additionally, under UHV conditions multiple slip length friction with increasing load was reported, while in ethanol surroundings only single (lattice unit length) slips were observed. Our current understanding of this behavior relates the transition from single jumps to multiple jumps dynamics to the normal load (manifested through the amplitude of the interaction potential at the contact, U0) and to the damping of the system. Here we have incorporated the effect of the load dependency on both U0 and Keff within Prandtl—Tomlinson based simulations, accompanied by variations in the damping coefficient of the system. Introducing the experimentally observed load dependency to Keff resulted indeed in single slip jumps at critical damping, while multiple slip jumps were obtained at constant Keff. The average slip length increased with the normal load, particularly when the system became underdamped. Our work provides a glimpse on the relation between the characteristic observables in atomic-scale sliding friction (maximal slip forces, stiffness, and slip dynamics) with respect to their governing parameters (corrugation energy, effective stiffness, and damping). While common understanding in nanotribology relates the effect of surrounding media mainly to the interaction potential at the contact, here we show that the media can also greatly affect the elastic interaction, and consequently play an important role on the transition from single to multiple stick-slip.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3