From ultra-low friction to superlubricity state of black phosphorus: Enabled by the critical oxidation and load

Author:

Li Qiang,Su Fenghua,Chen Yanjun,Sun Jianfang

Abstract

AbstractBased on the density functional theory (DFT), we investigate the friction properties of inevitable oxidized black phosphorus (o-BP). o-BP with the weaker interlayer adhesion exhibits their great potential as a solid lubricant. At the zero load, the friction property of o-BP is adjusted by its oxidation degree. Expressly, ultra-low friction of P4O2 (50% oxidation, O : P = 2 : 4 = 50%) is obtained, which is attributed to the upper O atoms with lower sliding resistance in the O channel formed by lower layer O atoms. More attractive, we observe superlubricity behavior of o-BP at the critical load/distance due to the flattening potential energy surface (PES). The flattening PES is controlled by the electrostatic role for the high-load (P4O3, O : P = 3 : 4 = 75%), and by the electrostatic and dispersion roles for the low-load (P4O2). Distinctly, the transform from ultra-low friction to superlubricity state of black phosphorus (BP) can be achieved by critical oxidation and load, which shows an important significance in engineering application. In addition, negative friction behavior of o-BP is a general phenomenon (Z > Zmin, Zmin is the interlayer distances between the outermost P atoms of minimum load.), while its surface-surface model is different from the fold mechanism of the tip-surface model (Z0 < Z < Zmin, Z0 is the interlayer distances between the outermost P atoms of equilibrium state.). Thus, this phenomenon cannot be captured due to the jump effect with instability of the atomic force microscopy (AFM) (Z > Zmin). In summary, o-BP improves the friction performance and reduces the application limitation, comparing to graphene (Gr), MoS2, and their oxides.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3