Tailoring the tribological properties of nanostructured carbon films under water lubrication

Author:

Yang Lei,Xin Shaoshan,Geng Jiang,Guo Meiling

Abstract

AbstractCarbon films have been considered suitable to be applied in water lubrication since they exhibit excellent friction-reducing and wear resistance, chemical inertness, etc. However, the basic understanding of tribological behaviors of carbon-based films under water lubrication still needs to be explored. In the present work, carbon films with different nanostructures were prepared by the electron cyclotron resonance (ECR) plasma nano-surface manufacturing system, and micro-textures with different sizes were prepared on the surface of carbon films by plasma etching. The influence of nanostructure and surface texture on the tribological properties of carbon films was investigated. The results show that different nanostructured carbon films can obtain lower friction coefficients and longer wear life under water lubrication than under dry condition. Due to low surface roughness, high hardness, and compact structure, the tribological properties of amorphous carbon (a-C) films under water lubrication are much better than those of graphene sheet-embedded carbon (GSEC) films. The prepared surface texture has a negative effect on the hard a-C film, but it can make the soft GSEC film generate soft wear debris at the initial stage. With the action of water, the soft wear debris is bonded on the surface of the contacting ball to form a silt-like transfer film, which increases the wear life by nearly three orders of magnitude. These results extend the basic understanding of the tribological behavior of carbon film under water lubrication, which is crucial in both fundamental and applied science.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3