Role of interfacial water in adhesion, friction, and wear—A critical review

Author:

Chen Lei,Qian Linmao

Abstract

AbstractSurficial water adsorption and interfacial water condensation as natural phenomena that can alter the contact status of the solid interface and tribological performances are crucial in all length scales, i.e., from earthquakes to skating at the macroscale level and even to micro/nano-electromechanical systems (M/NEMS) at the microscale/nanoscale level. Interfacial water exhibits diverse structure and properties from bulk water because of its further interaction with solid surfaces. In this paper, the evolutions of the molecular configuration of the adsorbed water layer depending on solid surface chemistry (wettability) and structure, environmental conditions (i.e., relative humidity and temperature), and experimental parameters (i.e., sliding speed and normal load) and their impacts on tribological performances, such as adhesion, friction, and wear, are systematically reviewed. Based on these factors, interfacial water can increase or reduce adhesion and friction as well as facilitate or suppress the tribochemical wear depending on the water condensation kinetics at the interface as well as the thickness and structure of the involved interfacial water.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3