Author:
Ge Xiangyu,Chai Zhiyuan,Shi Qiuyu,Liu Yanfei,Wang Wenzhong
Abstract
AbstractSuperlubricity has drawn substantial attention worldwide while the energy crisis is challenging human beings. Hence, numerous endeavors are bestowed to design materials for superlubricity achievement at multiple scales. Developments in graphene-family materials, such as graphene, graphene oxide, and graphene quantum dots, initiated an epoch for atomically thin solid lubricants. Nevertheless, superlubricity achieved with graphene-family materials still needs fundamental understanding for being applied in engineering in the future. In this review, the fundamental mechanisms for superlubricity that are achieved with graphene-family materials are outlined in detail, and the problems concerning graphene superlubricity and future progress in superlubricity are proposed. This review concludes the fundamental mechanisms for graphene superlubricity and offers guidance for utilizing graphene-family materials in superlubricity systems.
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献