One-step method to enhance biotribological properties and biocompatibility of DLC coating by ion beam irradiation

Author:

Liu Yuzhen,Zhang Kelun,Han Jae-Ho,Hwang Youn-Hoo,Xu Shusheng,Kim Dae-Eun

Abstract

AbstractA one-step method was developed to create a highly biocompatible micropatterned surface on a diamond-like carbon (DLC) through irradiation with a nitrogen ion beam and thus enhance the biocompatibility of osseointegrated surfaces and biotribological performance of articular surfaces. The biocompatibility and biotribological mechanisms were analyzed in terms of the structure and morphology of DLC. It was demonstrated that a layer enriched in sp3 C−N bonds was formed on the surface of the DLC after nitrogen ion beam irradiation. Moreover, with an increase in the radiation dose, the content of sp3 C−N on the DLC surface increased significantly, and the biocompatibility was positively correlated with it. The adhesion of the MC3T3 osteoblasts increased significantly from 32% to 86% under an irradiation dose of 8 × 1015 ions/cm2. In contrast, the micropattern had a significant negative effect on the adhesion of the osteoblasts as it physically hindered cell expansion and extension. The micropattern with a depth of 37 nm exhibited good friction properties, and the coefficient of friction was reduced by 21% at relatively high speeds.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3