Experimental study on the feasibility of alternative materials for tilting pad thrust bearings operating in transition to mixed friction

Author:

Wasilczuk Michał,Wodtke Michał

Abstract

AbstractIn hydrodynamic bearings traditional bearing alloys: Babbitts and bronzes are most frequently utilized. Polymer sliding layers are sometimes applied as a valuable alternative. Hard diamond-like carbon (DLC) coatings, which are also considered for certain applications may show some advantages, as well. Although material selection is of secondary importance in a full film lubrication regime it becomes important in mixed friction conditions, which is crucial for bearings with frequent starts and stops. Experimental research aimed at studying the performance of fluid film bearings in the specific operating regime, including the transition to mixed friction, is described in the paper. The tests were carried out on four tilting pad bearings of different material compositions: Steel/bronze, DLC/steel, steel/polyether ether ketone (PEEK), and steel/Babbitt. The tests comprised stopping under load and reproduction of the Stribeck curve by decreasing rotational speed to very low values, and observing the changes of friction force during the transition to mixed friction regime. Analysis of the transition conditions and other results showed clear differences between the tested bearings, illustrating the feasibility of less popular material compositions for bearings operating in specific conditions. More specifically, the DLC/steel bearing was demonstrating superior performance, i.e. lower friction, transition to mixed friction occurring at higher load, and more stable performance at start-stop regime over the other tested bearings.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3