Pin-on-disc study of dry sliding behavior of Co-free HVOF-coated disc tested against different friction materials

Author:

Federici Matteo,Menapace Cinzia,Mancini Alessandro,Straffelini Giovanni,Gialanella Stefano

Abstract

AbstractThe dry sliding behavior of three commercial friction materials (codenamed FM1, FM2, and FM3) tested against a Co-free cermet coating produced by high-velocity oxy-fuel (HVOF) on gray cast-iron discs is investigated. FM1 is a conventional low-metallic friction material, FM2 is developed for using against HVOF-coated discs, and FM3 is a Cu-free friction material with a low content of abrasives and a relatively high concentration of steel fibers. For the tribological evaluation, they are tested on a pin-on-disc (PoD) test rig against Co-free HVOF-coated discs, with particular attention to the running-in stage, which is fundamental for the establishment of a friction layer between the two mating surfaces, i.e., the pin and disc. The PoD tests are performed at room temperature (RT) and a high temperature (HT) of 300 °C. At RT, all materials exhibit a long running-in stage. At HT, no running-in is observed in FM1 and FM2, whereas a shorter running-in period, with respect to the RT case, is observed in FM3 followed by the attainment of a comparatively high coefficient of friction. At RT, the pin wear is mild in all cases but severe at HT. FM3 shows the lowest wear rate at both temperatures. Moreover, the coated disc shows no wear when sliding against the FM3 friction material. All the results are interpreted considering the microstructural characteristics of the friction layers formed on the sliding surfaces. The findings of the present study provide insights into reducing wear in braking system components and hence reducing environmental particulate matter emissions from their wear, through the use of disc coatings.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3