Structure, tribological properties, and the growth mechanism of in-situ generated TiC in titanium cermet

Author:

Sun Xiaolei,Luo Yong,Wang Junyang,Wang Qingliang,Qiao Jianghao,Beadling Andrew,Bryant Michael,Jin Zhongmin

Abstract

AbstractTitanium cermet combining metallic toughness with ceramic wear resistance has been proven to be a potential candidate for implanted joint material. In this work, titanium cermet was synthesized by means of the elevated temperature solid carburizing technology. The Ti13Nb13Zr alloy surface was found to be converted into TiC ceramic layer combined with a carbon strengthened diffusion zone underneath. The overall thickness of the carburized region grew to about 100 µm after 120 min carburization at 1,500 K. In order to clarify the growth behaviors of TiC ceramic layer, a growth mechanism is proposed. At the beginning of carburizing process, carbonaceous gas decomposed from carburizer due to high temperature and then converted to free atomic carbons through reduction reaction. Then, in-situ generated TiC ceramic layer possessing certain thickness formed on the surface, meanwhile, the inner carbon diffusion zone also grew inwards due to physical diffusion of carbon, and finally forming a gradient carbon distribution. In addition, the tribological behaviors of the new materials were evaluated through reciprocating ball-on-plate sliding wear tests in bovine calf serum. Although there was an increase in friction coefficient, the wear rate decreased by 59.6% due to the formation of the wear-resistant TiC ceramic layer. The wear mechanisms evolved from severe abrasive wear for bare Ti13Nb13Zr alloy to mild adhesive wear for titanium cermet.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3