Decohesion of graphene from a uniaxially-stretched substrate: Failure analysis of a frictional adhesive interface

Author:

Peng Bo,Xu Chaochen,Wang Qingao,Zhao Pei,Feng Xiqiao,Li Qunyang

Abstract

AbstractComposite structures consisting of two-dimensional (2D) materials deposited on elastic substrates have a wide range of potential applications in flexible electronics. For such devices, robust 2D film/substrate interfacial adhesion is essential for their reliable performance when subjected to external thermal and mechanical loads. To better understand the strength and failure behavior of the 2D film/substrate interfaces, two types of graphene/polymer samples with distinct interfacial adhesion properties are fabricated and tested by uniaxially stretching the substrates. Depending on the interfacial adhesion, two drastically different debonding rates are observed, i.e., rapid snap-through debonding and more progressive crack propagation. Motivated by the experimental observation, we propose an improved shear-lag model with a trapezoidal-shaped cohesive zone to derive an analytical solution for the decohesion behavior. The theoretical model reveals that the decohesion behavior of the frictional adhesive interface is governed by three dimensionless parameters. Particularly, the dimensionless length of the film essentially determines the decohesion rate; while the other two parameters affect the critical substrate strain to initiate debonding. By fitting the experimental data with the theoretical model, the intrinsic adhesion properties of the two samples are obtained with physically meaningful values. This work offers an analytical solution to describing the decohesion behavior of general thin film/substrate systems with a frictional adhesive interface, which is beneficial for characterizing and optimizing the mechanical properties of various thin film/polymer devices.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanics of microblister tests in 2D materials accounting for frictional slippage;Carbon;2024-10

2. The interfacial behavior of a liquid crystal elastomer film bonded to an orthotropic substrate under light illumination;Mechanics of Advanced Materials and Structures;2024-09-03

3. Analysis of parameters influencing delamination in thermo-mechanically loaded graphene/polymer layered nanocomposites;2024 25th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2024-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3