Atomistic understanding of rough surface on the interfacial friction behavior during the chemical mechanical polishing process of diamond

Author:

Yuan Song,Guo Xiaoguang,Wang Hao,Kang Renke,Gao Shang

Abstract

AbstractThe roughness of the contact surface exerts a vital role in rubbing. It is still a significant challenge to understand the microscopic contact of the rough surface at the atomic level. Herein, the rough surface with a special root mean square (RMS) value is constructed by multivariate Weierstrass–Mandelbrot (W–M) function and the rubbing process during that the chemical mechanical polishing (CMP) process of diamond is mimicked utilizing the reactive force field molecular dynamics (ReaxFF MD) simulation. It is found that the contact areaA/A0is positively related with the load, and the friction forceFdepends on the number of interfacial bridge bonds. Increasing the surface roughness will increase the friction force and friction coefficient. The model with low roughness and high lubrication has less friction force, and the presence of polishing liquid molecules can decrease the friction force and friction coefficient. The RMS value and the degree of damage show a functional relationship with the applied load and lubrication, i.e., the RMS value decreases more under larger load and higher lubrication, and the diamond substrate occurs severer damage under larger load and lower lubrication. This work will generate fresh insight into the understanding of the microscopic contact of the rough surface at the atomic level.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3