Author:
Sun Wei,Song Qingrui,Liu Kun,Zhang Qing,Tao Zhensheng,Ye Jiaxin
Abstract
AbstractThe emerging use of two-dimensional (2D) nanomaterials as boundary lubricants in water offers numerous benefits over oil-based lubricants; whereas the friction reduction varies significantly with nanomaterial type, size, loading, morphology, etc. Graphene oxide (GO) and Ti3C2Tx MXene, a relatively new 2D material, are investigated as boundary lubricants in water in this study. The contact pair mainly includes Si3N4 balls and Si wafer. The results found (1) monodispersed GO offers better lubricity than monodispersed MXene under identical concentration and testing conditions; and (2) the mixed dispersion of GO and MXene (0.1 mg/ml: 0.1 mg/ml) produced the lowest friction coefficient of ∼ 0.021, a value 4× and 10× lower than that produced by comparable mono-dispersions of GO or MXene, respectively. Wear track analysis, focused ion beam microscopy, in-situ contact observation, and atomic force microscopy (AFM) characterization suggest (1) GO nanoflakes have higher adhesion than MXene and are more easily adsorbed on the tribopairs’ surfaces, and (2) GO/MXene tribofilm has a layered nanostructure constituting GO, MXene, amorphous carbon, and TiO2. We further hypothesized that the high lubricity of GO/MXene results from the synergy of GO’s high adhesiveness, MXene’s load support ability, and the low shear strength of both constituents. The present study highlights the key role of tribofilm stability in water-based boundary lubrication using state-of-the-art 2D nanomaterials.
Publisher
Springer Science and Business Media LLC
Subject
Surfaces, Coatings and Films,Mechanical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献