Robust and conductive hydrogel based on mussel adhesive chemistry for remote monitoring of body signals

Author:

Li Weijun,Liu Hao,Mi Yuanyuan,Zhang Miaoran,Shi Jinmiao,Zhao Ming,Ramos Melvin A.,Hu Travis Shihao,Li Jianxiong,Xu Meng,Xu Quan

Abstract

AbstractThere is a high demand for hydrogels with multifunctional performance (a combination of adhesive, mechanical, and electrical properties) in biological, tissue engineering, robotics, and smart device applications. However, a majority of existing hydrogels are relatively rigid and brittle, with limited stretchability; this hinders their application in the emerging field of flexible devices. In this study, cheap and abundant potato residues were used with polyacrylamide (PAM) to fabricate a multifunctional hydrogel, and chitosan was used for the design of a three-dimentional (3D) network-structured hydrogel. The as-prepared hydrogels exhibited excellent stretchability, with an extension exceeding 900% and a recovery degree of over 99%. Due to the combination of physical and chemical cross-linking properties and the introduction of dopamine, the designed hydrogel exhibits a remarkable self-healing ability (80% mechanical recovery in 2 h), high tensile strength (0.75 MPa), and ultra-stretchability (900%). The resultant products offer superior properties compared to those of previously reported tough and self-healing hydrogels for wound adhesion. Chitosan and potato residues were used as scaffold materials for the hydrogels with excellent mechanical properties. In addition, in vitro experiments show that these hydrogels feature excellent antibacterial properties, effectively hindering the reproduction of bacteria. Moreover, the ternary hydrogel can act as a strain sensor with high sensitivity and a gauge factor of 1.6. The proposed strategy is expected to serve as a reference for the development of green and recyclable conductive polymers to fabricate hydrogels. The proposed hydrogel can also act as a suitable strain sensor for bio-friendly devices such as smart wearable electronic devices and/or for health monitoring.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3