AFM probe for measuring ∼10−5 ultra-low friction coefficient: Design and application

Author:

Chen Yushan,Jiang Liang,Qian Linmao

Abstract

AbstractSuperlubricity provides a novel approach to addressing friction and wear issues in mechanical systems. However, little is known regarding improving the atomic force microscope (AFM) friction coefficient measurement resolution. Accordingly, this study established the theoretical formula for the AFM friction coefficient measurement and deduced the measurement resolution. Then, the formula was applied to the AFM probe with a rectangular cross-section cantilever. The measurement resolution is associated with the dimensional properties of the AFM probe, the mechanical properties of the cantilever material, the properties of the position-sensitive detector (PSD), and probably the anti-vibration performance of the AFM. It is feasible to make the cantilever as short as possible and the tip as high as possible to improve the measurement resolution. An AFM probe for measuring an ultra-low friction coefficient was designed and fabricated. The cantilever’s length, width, and thickness are 50, 35, and 0.6 µm, respectively. The tip height is 23 µm. The measurement resolution can reach 7.1×10−6 under the maximum normal force. Moreover, the AFM probe was applied to measure the superlubricity between graphene layers. The friction coefficient is 0.00139 under 853.08 nN. This work provides a promising method for measuring a ∼10−5 friction coefficient of superlubricity.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3