BWIM aided damage detection in bridges using machine learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
Safety, Risk, Reliability and Quality,Civil and Structural Engineering
Link
http://link.springer.com/content/pdf/10.1007/s13349-015-0137-4.pdf
Reference25 articles.
1. Cavadas F, Smith FC, Figueiras J (2013) Damage detection using data-driven methods applied to moving-load responses. Mech Syst Signal Process 39(1):409–425
2. An Y et al (2014) A damage localization method based on the ‘jerk energy’. Smart Mater Struct 23(2):025020
3. Dackermann U, Smith WA, Randall RB (2013) Application of cepstrum analysis and artificial neural networks for the damage identification of a two-storey framed structure based on response-only measurements. Proceedings for the 6th international conference on structural health monitoring of intelligent infrastructure, Hong Kong, China, 9–11
4. Figueiredo E et al (2014) A Bayesian approach based on a Markov-chain Monte Carlo method for damage detection under unknown sources of variability. Eng Struct 80:1–10
5. Laory I et al (2013) ‘Combined model-free data-interpretation methodologies for damage detection during continuous monitoring of structures. J Comput Civil Eng 27(6):657–666
Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Implementation of explanatory texts output for bridge damage in a bridge inspection web system;Advances in Engineering Software;2024-09
2. A framework specialized for large-scale vehicle–bridge interaction simulation;Computers & Structures;2024-09
3. Damage detection for high-speed railway standard box girders based on time–frequency characteristics of train-induced strain;Mechanical Systems and Signal Processing;2024-09
4. Free Vibration Response Studies on Bridges;IOP Conference Series: Earth and Environmental Science;2024-08-01
5. A strategy for out-of-roundness damage wheels identification in railway vehicles based on sparse autoencoders;Railway Engineering Science;2024-06-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3