Health monitoring of ultra high fiber performance reinforced concrete communication tower using machine learning algorithms

Author:

Saleem Sarah,Hejazi FarzadORCID,Ostovar Nima

Abstract

AbstractWithin the last decades, the needed for communication towers has accelerated with the requirements for effective communication, especially for radio, radar, and television. The complexity configuration of the tower and limit access to the structure body especially inner part of the tower with hollow section is led the health monitoring of tower as the main challenging issue to maintenance during its function. The change of natural frequencies can be considered as one of the prevalent damage detection methods in structural assessment procedures. Therefore, the main aim of present research is to develop health monitoring system for Ultra High Fiber Performance Reinforced Concrete (UHPFRC) communication tower based on frequency domain response. Since the frequency data of tower is mostly noisy and interpreting of frequency in different modes in variant case of tower damage. The hybrid algorithm based on the Adaboost, Bagging and RUSBoost algorithms are implemented to identify the damage in the UHPFRC communication tower using frequency domain data. The training samples for the algorithm are obtained from a finite element simulation and full-scale experiment testing is also performed to generate the testing samples. The finite element simulation dynamic frequency results are verified through conducting a full-scale experimental test on 30 m height UHPFRC communication tower. For this propose, frequency Response Functions (FRF’s), for healthy and damaged structures were obtained by exciting of tower by an impact hammer and the acceleration response recorded by three accelerometers sensors attached in suitable positions. The developed hybrid algorithm to identifying the damage is tested and verified by considering the part of tower segments 2–3 and conducting experimental testing on the healthy structure as well as a damaged structure which caused using dynamic actuator. The testing results proved the accuracy of the developed optimized hybrid algorithm to identify damage in the tower structure in variant condition.

Funder

Kementerian Sains, Teknologi dan Inovasi

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3