Ensemble learning-based structural health monitoring of a bridge using an interferometric radar system

Author:

Yaghoubzadehfard Ali,Lumantarna Elisa,Herath Nilupa,Sofi MassoudORCID,Rad Mehmet

Abstract

AbstractDue to the increase in population, urbanisation, transportation development, and the aging of existing bridges, there is a growing need for new and rapid structural health monitoring (SHM) of bridges. To address this challenge, a method that stands out is the use of an interferometric radar system-based device, specifically Image by Interferometric Survey-Frequency for structures (IBIS-FS). Known for its portability and non-intrusive operation, IBIS-FS does not require direct contact with the bridge. This study utilised IBIS-FS to capture a pedestrian bridge’s natural frequencies and mode shapes. The data obtained were found to be consistent with results from finite element models, demonstrating the reliability of IBIS-FS in capturing modal parameters. Building upon this foundation, the study then explores the application of advanced ensemble-based machine-learning techniques. By leveraging the data acquired from IBIS-FS, algorithms such as Random Forest, Gradient-boosted Decision Trees (GBDT), and Extreme Gradient Boosting (XGBoost) are used for bridge damage detection. These machine-learning (ML) techniques are suited to analyse the incomplete modal parameters of bridges, as captured by IBIS-FS. The study focuses on using these algorithms to interpret the changes in modal parameters, specifically identifying damage as a reduction in the stiffness of elements. This approach allows for a comprehensive analysis, where the modal parameters, including mode shapes and natural frequencies altered by varying noise levels, are fed as input to the models. It was observed that all three ML methods, with Random Forest in particular, can effectively identify the location and severity of damage, demonstrating an efficient training process. The robustness of GBDT and XGBoost in handling complex data sets also shows great promise for their application in bridge damage detection. Collectively, these results underscore the potential of combining advanced ML techniques like Random Forest, GBDT, and XGBoost with the data acquired from IBIS-FS.

Funder

Melbourne School of Engineering, University of Melbourne

University of Melbourne

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3