Prone position: how understanding and clinical application of a technique progress with time

Author:

Gattinoni LucianoORCID,Brusatori Serena,D’Albo Rosanna,Maj Roberta,Velati Mara,Zinnato Carmelo,Gattarello Simone,Lombardo Fabio,Fratti Isabella,Romitti Federica,Saager Leif,Camporota Luigi,Busana Mattia

Abstract

AbstractHistorical backgroundThe prone position was first proposed on theoretical background in 1974 (more advantageous distribution of mechanical ventilation). The first clinical report on 5 ARDS patients in 1976 showed remarkable improvement of oxygenation after pronation. PathophysiologyThe findings in CT scans enhanced the use of prone position in ARDS patients. The main mechanism of the improved gas exchange seen in the prone position is nowadays attributed to a dorsal ventilatory recruitment, with a substantially unchanged distribution of perfusion. Regardless of the gas exchange, the primary effect of the prone position is a more homogenous distribution of ventilation, stress and strain, with similar size of pulmonary units in dorsal and ventral regions. In contrast, in the supine position the ventral regions are more expanded compared with the dorsal regions, which leads to greater ventral stress and strain, induced by mechanical ventilation.Outcome in ARDSThe number of clinical studies paralleled the evolution of the pathophysiological understanding. The first two clinical trials in 2001 and 2004 were based on the hypothesis that better oxygenation would lead to a better survival and the studies were more focused on gas exchange than on lung mechanics. The equations better oxygenation = better survival was disproved by these and other larger trials (ARMA trial). However, the first studies provided signals that some survival advantages were possible in a more severe ARDS, where both oxygenation and lung mechanics were impaired. The PROSEVA trial finally showed the benefits of prone position on mortality supporting the thesis that the clinical advantages of prone position, instead of improved gas exchange, were mainly due to a less harmful mechanical ventilation and better distribution of stress and strain. In less severe ARDS, in spite of a better gas exchange, reduced mechanical stress and strain, and improved oxygenation, prone position was ineffective on outcome.Prone position and COVID-19The mechanisms of oxygenation impairment in early COVID-19 are different than in typical ARDS and relate more on perfusion alteration than on alveolar consolidation/collapse, which are minimal in the early phase. Bronchial shunt may also contribute to the early COVID-19 hypoxemia. Therefore, in this phase, the oxygenation improvement in prone position is due to a better matching of local ventilation and perfusion, primarily caused by the perfusion component. Unfortunately, the conditions for improved outcomes, i.e. a better distribution of stress and strain, are almost absent in this phase of COVID-19 disease, as the lung parenchyma is nearly fully inflated. Due to some contradictory results, further studies are needed to better investigate the effect of prone position on outcome in COVID-19 patients.Graphical Abstract

Publisher

Springer Science and Business Media LLC

Reference105 articles.

1. Bryan AC. Conference on the scientific basis of respiratory therapy. Pulmonary physiotherapy in the pediatric age group. Comments of a devil’s advocate. Am Rev Respir Dis. 1974;110:143–4.

2. Piehl MA, Brown RS. Use of extreme position changes in acute respiratory failure. Crit Care Med. 1976;4:13–4.

3. Douglas WW, Rehder K, Beynen FM, Sessler AD, Marsh HM. Improved oxygenation in patients with acute respiratory failure: the prone position. Am Rev Respir Dis. 1977;115:559–66.

4. Maunder RJ, Shuman WP, McHugh JW, Marglin SI, Butler J. Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA. 1986;255:2463–5.

5. Gattinoni L, Mascheroni D, Torresin A, Marcolin R, Fumagalli R, Vesconi S, et al. Morphological response to positive end expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med. 1986;12:137–42.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3