Deep Learning-Based Natural Language Processing in Radiology: The Impact of Report Complexity, Disease Prevalence, Dataset Size, and Algorithm Type on Model Performance

Author:

Olthof A. W.ORCID,van Ooijen P. M. A.,Cornelissen L. J.

Abstract

AbstractIn radiology, natural language processing (NLP) allows the extraction of valuable information from radiology reports. It can be used for various downstream tasks such as quality improvement, epidemiological research, and monitoring guideline adherence. Class imbalance, variation in dataset size, variation in report complexity, and algorithm type all influence NLP performance but have not yet been systematically and interrelatedly evaluated. In this study, we investigate these factors on the performance of four types [a fully connected neural network (Dense), a long short-term memory recurrent neural network (LSTM), a convolutional neural network (CNN), and a Bidirectional Encoder Representations from Transformers (BERT)] of deep learning-based NLP. Two datasets consisting of radiologist-annotated reports of both trauma radiographs (n = 2469) and chest radiographs and computer tomography (CT) studies (n = 2255) were split into training sets (80%) and testing sets (20%). The training data was used as a source to train all four model types in 84 experiments (Fracture-data) and 45 experiments (Chest-data) with variation in size and prevalence. The performance was evaluated on sensitivity, specificity, positive predictive value, negative predictive value, area under the curve, and F score. After the NLP of radiology reports, all four model-architectures demonstrated high performance with metrics up to > 0.90. CNN, LSTM, and Dense were outperformed by the BERT algorithm because of its stable results despite variation in training size and prevalence. Awareness of variation in prevalence is warranted because it impacts sensitivity and specificity in opposite directions.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Information Systems,Medicine (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3