Author:
Kim Era,Caraballo Pedro J.,Castro M. Regina,Pieczkiewicz David S.,Simon Gyorgy J.
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Information Systems,Medicine (miscellaneous)
Reference41 articles.
1. Obermeyer, Z., and Emanuel, E. J., Predicting the future - big data, machine learning, and clinical medicine. The New England journal of medicine 375(13):1216–1219, 2016.
2. Florez, J. C., Precision medicine in diabetes: Is it time? Diabetes Care 39(7):1085–1088, 2016.
3. Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., and Chouvarda, I., Machine learning and data mining methods in diabetes research. Comput. Struct. Biotechnol. J. 15:104–116, 2017.
4. Perveen, S. et al., A systematic machine learning based approach for the diagnosis of non-alcoholic fatty liver disease risk and progression. Comput. Struct. Biotechnol. J. 13(December):1445–1454, 2017, 2016.
5. Lagani, V. et al., Development and validation of risk assessment models for diabetes-related complications based on the DCCT/EDIC data. J. Diabetes Complications 29(4):479–487, 2015.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献