Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Information Systems,Medicine (miscellaneous)
Reference29 articles.
1. Amin, J., Sharif, M., Yasmin, M., Ali, H., and Fernandes, S.L., A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions. J Comput Sci-Neth. 19:153–164, 2017.
2. Gupta, G., Kulasekaran, S., Ram, K., Niranjan, J., Sivaprakasam, M., and Gandhi, R., Local characterization of neovascularization and identification of proliferative diabetic retinopathy in retinal fundus images. Comput Med Imaging Graph. 55:124–132, 2017.
3. Moazam Fraza, M., Jahangira, W., Zahida, S., Hamayuna, M.M., and Barman, S.A., Multiscale segmentation of exudates in retinal images using contextual cues and ensemble classification. Biomed Signal Proces. 35:50–62, 2017.
4. Rahim, S.S., Palade, V., Shuttleworth, J., and Jayne, C., Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Informatics. 3(4):249–267, 2016.
5. Seoud, L., Hurtut, T., Chelbi, J., Cheriet, F., and Pierre Langlois, J.M., Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Biomed Eng. 35(4):1116–1126, 2016.
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献