Abstract
AbstractSmall bowel capsule endoscopy (SBCE) can be complementary to histological assessment of celiac disease (CD) and serology negative villous atrophy (SNVA). Determining the severity of disease on SBCE using statistical machine learning methods can be useful in the follow up of patients. SBCE can play an additional role in differentiating between CD and SNVA. De-identified SBCEs of patients with CD and SNVA were included. Probabilistic analysis of features on SBCE were used to predict severity of duodenal histology and to distinguish between CD and SNVA. Patients with higher Marsh scores were more likely to have a positive SBCE and a continuous distribution of macroscopic features of disease than those with lower Marsh scores. The same pattern was also true for patients with CD when compared to patients with SNVA. The validation accuracy when predicting the severity of Marsh scores and when distinguishing between CD and SNVA was 69.1% in both cases. When the proportions of each SBCE class group within the dataset were included in the classification model, to distinguish between the two pathologies, the validation accuracy increased to 75.3%. The findings of this work suggest that by using features of CD and SNVA on SBCE, predictions can be made of the type of pathology and the severity of disease.
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Information Systems,Medicine (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献