Domain Shifts in Machine Learning Based Covid-19 Diagnosis From Blood Tests

Author:

Roland TheresaORCID,Böck CarlORCID,Tschoellitsch ThomasORCID,Maletzky AlexanderORCID,Hochreiter SeppORCID,Meier JensORCID,Klambauer GünterORCID

Abstract

AbstractMany previous studies claim to have developed machine learning models that diagnose COVID-19 from blood tests. However, we hypothesize that changes in the underlying distribution of the data, so called domain shifts, affect the predictive performance and reliability and are a reason for the failure of such machine learning models in clinical application. Domain shifts can be caused, e.g., by changes in the disease prevalence (spreading or tested population), by refined RT-PCR testing procedures (way of taking samples, laboratory procedures), or by virus mutations. Therefore, machine learning models for diagnosing COVID-19 or other diseases may not be reliable and degrade in performance over time. We investigate whether domain shifts are present in COVID-19 datasets and how they affect machine learning methods. We further set out to estimate the mortality risk based on routinely acquired blood tests in a hospital setting throughout pandemics and under domain shifts. We reveal domain shifts by evaluating the models on a large-scale dataset with different assessment strategies, such as temporal validation. We present the novel finding that domain shifts strongly affect machine learning models for COVID-19 diagnosis and deteriorate their predictive performance and credibility. Therefore, frequent re-training and re-assessment are indispensable for robust models enabling clinical utility.

Funder

Linz Institute of Technology

State of Upper Austria

Johannes Kepler University Linz

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Information Systems,Medicine (miscellaneous)

Reference67 articles.

1. V. M. Corman, O. Landt, M. Kaiser, R. Molenkamp, A. Meijer, D. K. Chu, T. Bleicker, S. Brünink, J. Schneider, M. L. Schmidt, D. G. Mulders, B. L. Haagmans, B. Veer, S. Brink, L. Wijsman, G. Goderski, J. L. Romette, J. Ellis, M. Zambon, M. Peiris, H. Goossens, C. Reusken, M. P. G. Koopmans and C. Drosten, „Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR“, Euro Surveill., 25, p. 2000045, 2020. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

2. N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G. F. Gao and W. Tan, „A Novel Coronavirus from Patients with Pneumonia in China, 2019“, N. Engl. J. Med., 382, pp. 727-733, 2020. https://doi.org/10.1056/NEJMoa2001017

3. G. C. Mak, P. K. Cheng, S. S. Lau, K. K. Wong, C. S. Lau, E. T. Lam, R. C. Chan and D. N. Tsang, „Evaluation of rapid antigen test for detection of SARS-CoV-2 virus“, J. Clin. Virol., 129, p. 104500, 2020. https://doi.org/10.1016/j.jcv.2020.104500

4. M. J. Mina, R. Parker and D. B. Larremore, „Rethinking Covid-19 Test Sensitivity — A Strategy for Containment“, N. Engl. J. Med., 383, p. e120, 2020. https://doi.org/10.1056/NEJMp2025631

5. E. T. Chin, B. Q. Huynh, L. A. C. Chapman, M. Murrill, S. Basu and N. C. Lo, „Frequency of Routine Testing for Coronavirus Disease 2019 (COVID-19) in High-risk Healthcare Environments to Reduce Outbreaks“, Clin. Infect. Dis., p. ciaa1383, 2020. https://doi.org/10.1093/cid/ciaa1383

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3