Agent-based Modeling for Ontology-driven Analysis of Patient Trajectories

Author:

Calvaresi Davide,Schumacher Michael,Calbimonte Jean-Paul

Abstract

AbstractPatients are often required to follow a medical treatment after discharge, e.g., for a chronic condition, rehabilitation after surgery, or for cancer survivor therapies. The need to adapt to new lifestyles, medication, and treatment routines, can produce an individual burden to the patient, who is often at home without the full support of healthcare professionals. Although technological solutions –in the form of mobile apps and wearables– have been proposed to mitigate these issues, it is essential to consider individual characteristics, preferences, and the context of a patient in order to offer personalized and effective support. The specific events and circumstances linked to an individual profile can be abstracted as a patient trajectory, which can contribute to a better understanding of the patient, her needs, and the most appropriate personalized support. Although patient trajectories have been studied for different illnesses and conditions, it remains challenging to effectively use them as the basis for data analytics methodologies in decentralized eHealth systems. In this work, we present a novel approach based on the multi-agent paradigm, considering patient trajectories as the cornerstone of a methodology for modelling eHealth support systems. In this design, semantic representations of individual treatment pathways are used in order to exchange patient-relevant information, potentially fed to AI systems for prediction and classification tasks. This paper describes the major challenges in this scope, as well as the design principles of the proposed agent-based architecture, including an example of its use through a case scenario for cancer survivors support.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics,Information Systems,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stroke Medical Ontology for Supporting AI-based Stroke Prediction System using Bio-Signals;2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN);2021-08-17

2. Healthcare Informatics Challenges: A Medical Diagnosis Using Multi Agent Coordination-Based Model for Managing the Conflicts in Decisions;Advances in Intelligent Systems and Computing;2020-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3