Abstract
AbstractFor interventional radiology, dose management has persisted as a crucially important issue to reduce radiation exposure to patients and medical staff. This study designed a real-time dose visualization system for interventional radiology designed with mixed reality technology and Monte Carlo simulation. An earlier report described a Monte-Carlo-based estimation system, which simulates a patient’s skin dose and air dose distributions, adopted for our system. We also developed a system of acquiring fluoroscopic conditions to input them into the Monte Carlo system. Then we combined the Monte Carlo system with a wearable device for three-dimensional holographic visualization. The estimated doses were transferred sequentially to the device. The patient’s dose distribution was then projected on the patient body. The visualization system also has a mechanism to detect one’s position in a room to estimate the user’s exposure dose to detect and display the exposure level. Qualitative tests were conducted to evaluate the workload and usability of our mixed reality system. An end-to-end system test was performed using a human phantom. The acquisition system accurately recognized conditions that were necessary for real-time dose estimation. The dose hologram represents the patient dose. The user dose was changed correctly, depending on conditions and positions. The perceived overall workload score (33.50) was lower than the scores reported in the literature for medical tasks (50.60) for computer activities (54.00). Mixed reality dose visualization is expected to improve exposure dose management for patients and health professionals by exhibiting the invisible radiation exposure in real space.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Health Information Management,Health Informatics,Information Systems,Medicine (miscellaneous)
Reference19 articles.
1. den Boer A, de Feijter PJ, Serruys PW, Roelandt JRTC (2001) Real-Time Quantification and Display of Skin Radiation During Coronary Angiography and Intervention. Circulation 104:1779–1784.
2. Takata T, Kotoku J, Maejima H, Kumagai S, Arai N, Kobayashi T et al (2018) Fast skin dose estimation system for interventional radiology. J Radiat Res 59:233–239.
3. Bednarek DR, Barbarits J, Rana VK, Nagaraja SP, Josan MS, Rudin S (2011) Verification of the performance accuracy of a real-time skin-dose tracking system for interventional fluoroscopic procedures. Physiol Behav 176:796127.
4. Kumagai S, Arai N, Takata T, Kon D, Saitoh T, Oba H (2020) First experience of 192 Ir source stuck event during high-dose-rate brachytherapy in Japan. J Contemp 12:53–60.
5. Takata T, Kondo H, Yamamoto M, Shiraishi K, Kobayashi T, Furui S et al (2020) Immersive Radiation Experience for Interventional Radiology with Virtual Reality Radiation Dose Visualization Using Fast Monte Carlo Dose Estimation. Interventional Radiology 5:58–66.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献